252 research outputs found

    Is global ozone recovering?

    Get PDF
    Thanks to the Montreal Protocol, the stratospheric concentrations of ozone-depleting chlorine and bromine have been declining since their peak in the late 1990s. Global ozone has responded: The substantial ozone decline observed since the 1960s ended in the late 1990s. Since then, ozone levels have remained low, but have not declined further. Now general ozone increases and a slow recovery of the ozone layer is expected. The clearest signs of increasing ozone, so far, are seen in the upper stratosphere and for total ozone columns above Antarctica in spring. These two regions had also seen the largest ozone depletions in the past. Total column ozone at most latitudes, however, does not show clear increases yet. This is not unexpected, because the removal of chlorine and bromine from the stratosphere is three to four times slower than their previous increase. Detecting significant increases in total column ozone, therefore, will require much more time than the detection of its previous decline. The search is complicated by variations in ozone that are not caused by declining chlorine or bromine, but are due, e.g., to transport changes in the global Brewer–Dobson circulation. Also, very accurate observations are necessary to detect the expected small increases. Nevertheless, observations and model simulations indicate that the stratosphere is on the path to ozone recovery. This recovery process will take many decades. As chlorine and bromine decline, other factors will become more important. These include climate change and its effects on stratospheric temperatures, changes in the Brewer–Dobson circulation (both due to increasing CO2), increasing emissions of trace gases like N2O, CH4, possibly large future increases of short-lived substances (like CCl2H2) from both natural and anthropogenic sources, and changes in tropospheric ozone

    Global distribution of total ozone and lower stratospheric temperature variations

    No full text
    International audienceThis study gives an overview of interannual variations of total ozone and 50 hPa temperature. It is based on newer and longer records from the 1979 to 2001 Total Ozone Monitoring Spectrometer (TOMS) and Solar Backscatter Ultraviolet (SBUV) instruments, and on US National Center for Environmental Prediction (NCEP) reanalyses. Multiple linear least squares regression is used to attribute variations to various natural and anthropogenic explanatory variables. Usually, maps of total ozone and 50 hPa temperature variations look very similar, reflecting a very close coupling between the two. As a rule of thumb, a 10 Dobson Unit (DU) change in total ozone corresponds to a 1 K change of 50 hPa temperature. Large variations come from the linear trend term, up to -30 DU or -1.5 K/decade, from terms related to polar vortex strength, up to 50 DU or 5 K (typical, minimum to maximum), from tropospheric meteorology, up to 30 DU or 3 K, or from the Quasi-Biennial Oscillation (QBO), up to 25 DU or 2.5 K. The 11-year solar cycle, up to 25 DU or 2.5 K, or El NiĂąo/Southern Oscillation (ENSO), up to 10 DU or 1 K, are contributing smaller variations. Stratospheric aerosol after the 1991 Pinatubo eruption lead to warming up to 3 K at low latitudes and to ozone depletion up to 40 DU at high latitudes. Variations attributed to QBO, polar vortex strength, and to a lesser degree to ENSO, exhibit an inverse correlation between low latitudes and higher latitudes. Variations related to the solar cycle or 400 hPa temperature, however, have the same sign over most of the globe. Variations are usually zonally symmetric at low and mid-latitudes, but asymmetric at high latitudes. There, position and strength of the stratospheric anti-cyclones over the Aleutians and south of Australia appear to vary with the phases of solar cycle, QBO or ENSO

    Interannual variation patterns of total ozone and lower stratospheric temperature in observations and model simulations

    Get PDF
    We report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2000, by TOMS/SBUV), of temperature reanalyses (1958 to 2000, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO2, CFCs, CH4, N2O, NOx), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa ( 80 km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa ( 30 km). It is targeted on processes near the tropopause, and has more levels in this region. Despite some problems, both models generally reproduce the observed amplitudes and much of the observed lowlatitude patterns of the various modes of interannual variability in total ozone and lower stratospheric temperature. In most aspects MAECHAM4-CHEM performs slightly better than E39/C. MAECHAM4-CHEM overestimates the longterm decline of total ozone, whereas E39/C underestimates the decline over Antarctica and at northern mid-latitudes. The true long-term decline in winter and spring above the Correspondence to: W. Steinbrecht ([email protected]) Arctic may be underestimated by a lack of TOMS/SBUV observations in winter, particularly in the cold 1990s. Main contributions to the observed interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to −10 DU/decade at high northern latitudes, up to −40 DU/decade at high southern latitudes, and around −0.7 K/decade over much of the globe), from the intensity of the polar vortices (more than 40 DU, or 8 K peak to peak), the QBO (up to 20 DU, or 2 K peak to peak), and from tropospheric weather (up to 20 DU, or 2 K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 15 DU, or 1 K), or to ENSO (up to 10 DU, or 1 K). These observed variations are replicated well in the simulations. Volcanic eruptions have resulted in sporadic changes (up to −30 DU, or +3 K). At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high-latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO

    Interannual variation patterns of total ozone and temperature in observations and model simulations

    No full text
    International audienceWe report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2002, by TOMS/SBUV), of temperature reanalyses (1958 to 2002, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO2, CFCs, CH4, N2O, NOx), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa (?80 km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa (?30 km). It is targeted on processes near the tropopause, and has more levels in this region. Both models reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability, MAECHAM4-CHEM somewhat better than E39/C. Total ozone and lower stratospheric temperature show similar patterns. Main contributions to the interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to ?30 Dobson Units (DU) per decade, or ?1.5 K/decade), the QBO (up to 25 DU, or 2.5 K peak to peak), the intensity of the polar vortices (up to 50 DU, or 5 K peak to peak), and from tropospheric weather (up to 30 DU, or 3 K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 25 DU, or 2.5 K), and to ENSO (up to 15 DU, or 1.5 K). Volcanic eruptions have resulted in sporadic changes (up to ?40 DU, or +3 K). Most stratospheric variations are connected to the troposphere, both in observations and simulations. At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high- latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO

    Interannual variation patterns of total ozone and temperature in observations and model simulations

    Get PDF
    We report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2000, by TOMS/SBUV), of temperature reanalyses (1958 to 2000, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO2, CFCs, CH4, N2O, NOx), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa (≈80 km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa (≈30 km). It is targeted on processes near the tropopause, and has more levels in this region. Despite some problems, both models generally reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability in total ozone and lower stratospheric temperature. In most aspects MAECHAM4-CHEM performs slightly better than E39/C. MAECHAM4-CHEM overestimates the long-term decline of total ozone, whereas underestimates the decline over Antarctica and at northern mid-latitudes. The true long-term decline in winter and spring above the Arctic may be underestimated by a lack of TOMS/SBUV observations in winter, particularly in the cold 1990s. Main contributions to the observed interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to -10 DU/decade at high northern latitudes, up to -40 DU/decade at high southern latitudes, and around -0.7 K/decade over much of the globe), from the intensity of the polar vortices (more than 40 DU, or 8 K peak to peak), the QBO (up to 20 DU, or 2 K peak to peak), and from tropospheric weather (up to 20 DU, or 2 K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 15 DU, or 1 K), or to ENSO (up to 10 DU, or 1 K). These observed variations are replicated well in the simulations. Volcanic eruptions have resulted in sporadic changes (up to -30 DU, or +3 K). At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high-latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO

    Therapeutic and educational objectives in robot assisted play for children with autism

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio

    Interannual variation patterns of total ozone and lower stratospheric temperature in observations and model simulations

    Get PDF
    We report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2000, by TOMS/SBUV), of temperature reanalyses (1958 to 2000, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO<sub>2</sub>, <i>CFC</i>s, CH<sub>4</sub>, N<sub>2</sub>O, NO<sub>x</sub>), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01&nbsp;hPa (&asymp;80&nbsp;km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10&nbsp;hPa (&asymp;30&nbsp;km). It is targeted on processes near the tropopause, and has more levels in this region. Despite some problems, both models generally reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability in total ozone and lower stratospheric temperature. In most aspects MAECHAM4-CHEM performs slightly better than E39/C. MAECHAM4-CHEM overestimates the long-term decline of total ozone, whereas underestimates the decline over Antarctica and at northern mid-latitudes. The true long-term decline in winter and spring above the Arctic may be underestimated by a lack of TOMS/SBUV observations in winter, particularly in the cold 1990s. Main contributions to the observed interannual variations of total ozone and lower stratospheric temperature at 50&nbsp;hPa come from a linear trend (up to -10&nbsp;DU/decade at high northern latitudes, up to -40&nbsp;DU/decade at high southern latitudes, and around -0.7&nbsp;K/decade over much of the globe), from the intensity of the polar vortices (more than 40&nbsp;DU, or 8&nbsp;K peak to peak), the QBO (up to 20&nbsp;DU, or 2&nbsp;K peak to peak), and from tropospheric weather (up to 20&nbsp;DU, or 2&nbsp;K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 15&nbsp;DU, or 1&nbsp;K), or to ENSO (up to 10&nbsp;DU, or 1&nbsp;K). These observed variations are replicated well in the simulations. Volcanic eruptions have resulted in sporadic changes (up to -30&nbsp;DU, or +3&nbsp;K). At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high-latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO

    Local comparisons of tropospheric ozone: vertical soundings at two neighbouring stations in southern Bavaria

    Get PDF
    In this study ozone profiles of the differential-absorption lidar at Garmisch-Partenkirchen are compared with those of ozone sondes of the Forschungszentrum Jülich and of the Meteorological Observatory Hohenpeißenberg (German Weather Service). The lidar measurements are quality assured by the highly accurate nearby in situ ozone measurements at the Wank (1780 m a.s.l.) and Zugspitze (2962 m a.s.l.) summits and at the Global Atmosphere Watch station Schneefernerhaus (UFS, 2670 m a.s.l.), at distances of 9 km or less from the lidar. The mixing ratios of the lidar agree with those of the monitoring stations, with a standard deviation (SD) of 1.5 ppb, and feature a slight positive offset of 0.6 ± 0.6 ppb (SD) conforming to the known −1.8 % calibration bias of the in situ instruments. Side-by-side soundings of the lidar and electrochemical (ECC) sonde measurements in February 2019 by a team of the Forschungszentrum Jülich shows small positive ozone offsets for the sonde with respect to the lidar and the mountain stations (0.5 to 3.4 ppb). After applying an altitude-independent bias correction to the sonde data an agreement to within just ±2.5 ppb in the troposphere was found, which we regard as the wintertime uncertainty of the lidar. We conclude that the recently published uncertainties of the lidar in the final configuration since 2012 are realistic and rather small for low to moderate ozone concentrations. Comparisons of the lidar with the Hohenpeißenberg routine measurements with Brewer-Mast sondes are more demanding because of the distance of 38 km between the two sites implying significant ozone differences in some layers, particularly in summer. Our comparisons cover the 3 years September 2000 to August 2001, 2009, and 2018. A slight negative average offset (−3.64 ± 3.72 ppb (SD)) of the sondes with respect to the lidar was found. We conclude that most Hohenpeißenberg sonde data could be improved in the troposphere by recalibration with the Zugspitze station data (1978 to 2011 summit, afterwards UFS). This would not only remove the average offset but also greatly reduce the variability of the individual offsets. The comparison for 2009 suggests a careful partial re-evaluation of the lidar measurements between 2007 and 2011 for altitudes above 6 km, where occasionally a negative bias occurred.</p
    • …
    corecore